翻訳と辞書
Words near each other
・ Weak convergence (Hilbert space)
・ Weak derivative
・ Weak dimension
・ Weak duality
・ Weak entity
・ Weak equivalence
・ Weak equivalence (homotopy theory)
・ Weak evolutionarily stable strategy
・ Weak focusing
・ Weak form and strong form
・ Weak formulation
・ Weak generative capacity
・ Weak gravitational lensing
・ Weak Hausdorff space
・ Weak heap
Weak Hopf algebra
・ Weak hypercharge
・ Weak in the Presence of Beauty
・ Weak in the Presence of Beauty (album)
・ Weak in the Presence of Beauty (song)
・ Weak inflection
・ Weak interaction
・ Weak interpretability
・ Weak inverse
・ Weak isospin
・ Weak key
・ Weak localization
・ Weak measurement
・ Weak Moments of the Shadows
・ Weak n-category


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weak Hopf algebra : ウィキペディア英語版
Weak Hopf algebra

In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.
These objects were introduced by Böhm, Nill and Szlachányi. The first motivations for studying them came from quantum field theory and operator algebras.〔Böhm, Nill, Szlachányi. p. 387〕 Weak Hopf algebras have quite interesting representation theory; in particular modules over a semisimple finite weak Hopf algebra is a fusion category (which is a monoidal category with extra properties). It was also shown by Etingof, Nikshych and Ostrik that any fusion category is equivalent to a category of modules over a weak Hopf algebra.〔Etingof, Nikshych and Ostrik, Cor. 2.22〕
==Definition==
A weak bialgebra (H, \mu, \eta, \Delta, \varepsilon) over a field k is a vector space H such that
* (H, \mu, \eta) forms an associative algebra with multiplication \mu : H \otimes H \rightarrow H and unit \eta : k \rightarrow H,
* (H, \Delta, \varepsilon) forms a coassociative coalgebra with comultiplication \Delta : H \rightarrow H \otimes H and counit \varepsilon : H \rightarrow k,
for which the following compatibility conditions hold :
# Multiplicativity of the Comultiplication :
#: \Delta \circ \mu = (\mu \otimes \mu) \circ (\mathrm_H \otimes \sigma_ \otimes \mathrm_H) \circ (\Delta \otimes \Delta) ,
# Weak Multiplicativity of the Counit :
#: \varepsilon \circ \mu \circ (\mu \otimes \mathrm_H) = (\varepsilon \otimes \varepsilon ) \circ (\mu \otimes \mu) \circ (\mathrm_H \otimes \Delta \otimes \mathrm_H)= (\varepsilon \otimes \varepsilon ) \circ (\mu \otimes \mu) \circ (\mathrm_H \otimes \Delta^ \otimes \mathrm_H) ,
# Weak Comultiplicativity of the Unit :
#: (\Delta \otimes \mathrm_H) \circ \Delta \circ \eta = (\mathrm_H \otimes \mu \otimes \mathrm_H) \circ (\Delta \otimes \Delta) \circ (\eta \otimes \eta) = (\mathrm_H \otimes \mu^ \otimes \mathrm_H) \circ (\Delta \otimes \Delta) \circ (\eta \otimes \eta) ,
where \sigma_ : V \otimes W \rightarrow W \otimes V : v \otimes w \mapsto w \otimes v flips the two tensor factors. Moreover \mu^ = \mu \circ \sigma_ is the opposite multiplication and \Delta^ = \sigma_ \circ \Delta is the opposite comultiplication. Note that we also implicitly use Mac Lane's coherence theorem for the monoidal category of vector spaces, identifying (U \otimes V) \otimes W \cong U \otimes (V \otimes W) as well as V \otimes k \cong V \cong k \otimes V.
The definition is fairly self-explanatory, one sees that it is the compatibility between the algebra and coalgebra structures that is weaken.
A weak Hopf algebra (H, \mu, \eta, \Delta, \varepsilon, S) is a weak bialgebra (H, \mu, \eta, \Delta, \varepsilon) with a linear map S : H \to H, called the antipode, that satisfies:
* \mu \circ (\mathrm_H \otimes S) \circ \Delta = (\varepsilon \otimes \mathrm_H) \circ (\mu \otimes \mathrm_H) \circ (\mathrm_H \otimes \sigma_) \circ (\Delta \otimes \mathrm_H) \circ (\eta \otimes \mathrm_H),
* \mu \circ (S \otimes \mathrm_H) \circ \Delta = (\mathrm_H \otimes \varepsilon) \circ (\mathrm_H \otimes \mu) \circ (\sigma_ \otimes \mathrm_H) \circ (\mathrm_H \otimes \Delta) \circ (\mathrm_H \otimes \eta) ,
*S = \mu \circ (\mu \otimes \mathrm_H) \circ (S \otimes \mathrm_H \otimes S) \circ (\Delta \otimes \mathrm_H) \circ \Delta.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weak Hopf algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.